LASER OPTICAL RADIATION
The physical exposure variables that are relevant from a biophysical point of view are chosen according to the wavelength and duration of the radiation emitted by the source. More than one physical exposure variable, and therefore more than one corresponding exposure limit, may be relevant for a given source of laser optical radiation.
Exposure limit values
The exposure limit values are given in tables 2.2, 2.3 and 2.4 according to the wavelength of the radiation emitted and the associated risks for which they are relevant, as given in table 2.1.
The coefficientsCA,CB,CC,T1,T2, αmin and γ, as well as the corrections applicable to repetitive exposures, useful for identifying the relevant exposure limit values, are specified in tables 2.5 and 2.6.
Table 2.1: Radiation risks :
Wavelength [nm] λ |
Region of the spectrum |
Organ affected |
Risk |
Tables showing exposure limit values |
180 à 400 |
UV |
eye |
photochemical and thermal damage |
2.2, 2.3 |
180 à 400 |
UV |
skin |
erythema |
2.4 |
400 à 700 |
visible |
eye |
retinal lesion |
2.2 |
400 à 600 |
visible |
eye |
photochemical lesion |
2.3 |
400 à 700 |
visible |
skin |
thermal injury |
2.4 |
700 à 1 400 |
ARI |
eye |
thermal injury |
2.2, 2.3 |
700 à 1 400 |
ARF |
skin |
thermal injury |
2.4 |
1 400 à 2 600 |
IRB |
eye |
thermal lesion |
2.2 |
2 600 à106 |
CRI |
eye |
thermal injury |
2.2 |
1 400 à106 |
IRB, IRC |
eye |
thermal lesion |
2.3 |
1 400 à106 |
IRB, IRC |
skin |
thermal injury |
2.4 |
Table 2.2: Limit values for exposure of the eye to lasers Short-term exposure < 10 s
Wavelength |
Diaphra |
Duration [s] |
|||||||
10-13 – 10-11 |
10-11 – 10-9 |
10-9 – 10-7 |
10-7 – 1,8.10-5 |
1,8.10-5.10-5 |
5.10-5 – 10-3 |
10-3 -101 |
|||
UVC |
180 – 280 |
1 min for t˂0.3s; 1.5. t0.375 for 0.3˂t˂10s |
E = 31010 W m-2 |
H – 30 J m-2 |
|||||
UVB |
280 – 302 |
||||||||
303 |
H = 40 J m-2 if t < 2.6 . 10-9 then H = 5.6 .103 t0,25 J m-2 see note d |
||||||||
304 |
H = 60 J m-2 if t < 1.3 . 10-8 then H = 5.6 .103 t0.25 J m-2 see note d |
||||||||
305 |
H = 100 J m-2 if t < 1.0 . 10-7 then H = 5.6 .103 t0.25 J m-2 see note d |
||||||||
306 |
H = 160 J m-2 if t < 6.7 . 10-7 then H = 5.6 .103 t0.25 J m-2 see note d |
||||||||
307 |
H = 250 J m-2 if t < 4.0 . 10-6 then H = 5.6 .103 t0.25 J m-2 see note d |
||||||||
308 |
H = 400 J m-2 if t < 2.6 . 10-5 then H = 5.6 .103 t0.25 J m-2 see note d |
||||||||
309 |
H = 630 J m-2 if t < 1.6 . 10-4 then H – 5.6 .103 t0.25 J m-2 see note d |
||||||||
310 |
H = 103 J m-2 if 1 < 1.0 . 10-3 then H – 5.6 .103 t0.25 J m-2 see note d |
||||||||
3111 |
H = 1,6 . 103 J m-2 if t < 6.7 . 10-3 then H = 5.6 .103 t0.25 J m-2 see note d |
||||||||
312 |
H = 2,5 . 103 J m-2 if t < 4.0 . 10-2 then H = 5.6 .103 t0.25 J m-2 see note d |
||||||||
313 |
H = 4.0 . 103 J m-2 if t < 2.6 . 10-1 then H – 5.6 .103 t0.25 J m-2 see note d |
||||||||
314 |
H = 6,3 . 103 J m-2 if t < 1.6 .100 then H = 5.6 .103 t0.25 J m-2 see note d |
||||||||
UVA |
315 – 400 |
H = 5,6 . 103 t0.25 J m-2 |
|||||||
Visible |
400 – 700 |
7 mm |
H = 1,5 . 10-4EC J m-2 |
H = 2,7 .104 t0.75CE J m-2 |
H = 5 . 10-3 EC J m-2 |
H = 18 . t0.75CE J m-2 |
|||
700 – 1 050 |
H = 1,5 . 10-4CAEC J m-2 |
H = 2,7 .104 t0.75CACE J m-2 |
H = 5 . 10-3 CA CE J m-2 |
H = 18 . t0.75CACE J m-2 |
|||||
1 050- 1 400 |
H = 1,5 . 10-3DCEC J m-2 |
H = 2,7 .105 t0.75DCEC J m-2 |
H = 5 . 10-2 DC EC J m-2 |
H = 90 . t0.75CCCE J m-2 |
|||||
IRB |
1 400 – 1 500 |
See |
E =1012 W m-2 see note c |
H =103 J m-2 |
H = 5,6 .103. t0,25 J m-2 |
||||
1 500 -1 800 |
E=1013 W m-2 see note c |
H =104 J m-2 |
|||||||
1 800 – 2 600 |
E =1012 W m-2 see note c |
H =103 J m-2 |
H = 5,6 .103. t0,25 J m-2 |
||||||
2 600 –106 |
E =1011 W m-2 see note c |
H = 100 J m-2 |
H = 5,6 .103. t J m |
a If the laser wavelength corresponds to two limits, the more restrictive limit applies.
b If 1400 ≤ λ <105 nm: limit aperture diameter = 1 mm for t ≤ 0.3 s and 1.5 t0.375 mm for 0.3 s < t < 10 s ;
if105 ≤ λ ˂106 nm: limiting aperture diameter = 11 mm.
c Let be the limiting value of e for 1 ns.
d The table shows values corresponding to a single laser pulse. If there are several laser pulses, their durations are added together for the pulses emitted during an interval Tmin (shown in table 2.6) and t takes the resulting value from the formula: 5.6 *103 t0.25.
Table 2.3: Limit values for exposure of the eye to laser light Long-term exposure > 10 s
(You can consult the table in the OJ n° 153 of 04/07/2010 text number 11 at the following address: http: //www.legifrance.gouv.fr/jopdf/common/jo_pdf.jsp?numJO=0&dateJO=20100704&numTexte=11&pageDebut=12149&pageFin=12168)
Table 2.4: Limit values for skin exposure to lasers
Wavelengtha [mn] |
Limit aperture |
Duration [s] |
|||||||
< 10-9 |
10-9 – 10-7 |
10-7 – 10-3 |
10-3 –101 |
101 –103 |
103 – 3104 |
||||
UV |
180-400 |
3.5 mm |
E=31010 [W m-2] |
See eye exposure limits |
|||||
Visible and IRA |
400-700 |
3.5 mm |
E = 21011 [W m-2] |
H=200CA |
H = 1.1104CA t0.25 |
E = 2103CA [W m-2] |
|||
|
700 -1400 |
E = 21011CA [W m-2] |
|||||||
IRB |
1400-1500 |
E =1012 [W m-2] |
See eye exposure limits |
||||||
1500-1800 |
E =1013 [W m-2] |
||||||||
1 800-2600 |
E =1012 [W m-2] |
||||||||
2 600-106 |
E =1011 [W m-2] |
||||||||
a: If the wavelength or another laser parameter corresponds to two limits, the most restrictive limit applies. |
Table 2.5: Correction factors applied and other calculation parameters :
Parameter |
Spectral range of validity (nm) |
Value |
CA |
λ < 700 |
CA = 1.0 |
700 – 1 050 |
CA =100.002(λ – 700) |
|
1 050 – 1 400 |
AC = 5.0 |
|
CB |
400 – 450 |
BC = 1.0 |
450 – 700 |
CB =100.02(λ – 450) |
|
CC |
700 – 1 150 |
CC = 1.0 |
1 150 – 1 200 |
CC =100.018(λ – 1150) |
|
1 200 – 1 400 |
DC = 8.0 |
|
T1 |
λ < 450 |
T1 = 10 s |
450-500 |
T1 = 10 [100.02(λ – 450)] S |
|
λ > 500 |
T1 = 100 s |
.
Parameter |
Valid for biological effects |
Value |
αmin |
all thermal effects |
αmin = 1.5 mrad |
.
Parameter |
Angular range of validity (mard) |
Value |
EC |
α < αmin |
EC = 1.0 |
αmin < α < 100 |
EC = α/αmin |
|
α > 100 |
CE = α2/(αmin αmax) mrad with αmax = 100 mrad |
|
T2 |
α < 1,5 |
T2 = 10 s |
1,5 < α < 100 |
T2 = 10 [10(α – 1.5) / 98.5] S |
|
α > 100 |
T2 = 100 s |
.
Parameter |
Valid range of exposure time (s) |
Value |
γ |
t ≤ 100 |
γ = 11 [mrad] |
100 < t <104 |
γ = 1.1t0.5 [mard] |
|
t >104 |
γ = 110 [mrad] |
.
.
Table 2.6: Correction for repetitive exposure
The following three rules apply cumulatively to all repetitive exposures due to repetitive pulsed laser systems or laser scanning systems:
1) Exposure resulting from a single pulse in a pulse train does not exceed the exposure limit value for a single pulse of that pulse duration ;
2) The exposure resulting from a group of pulses (or a sub-group of pulses in a train) delivered in a time t does not exceed the exposure limit value for the time t ;
3) The exposure resulting from a single pulse in a group of pulses does not exceed the exposure limit value for a single pulse multiplied by a cumulative thermal correction factor Cp = N- 0.25, where N is the number of pulses. This rule applies only to exposure limits intended to protect against thermal injury where all pulses delivered in less than Tmin are considered to be a single pulse.
Parameter |
Spectral range of validity (nm) |
Value or description |
Tmin |
315 < λ ≤ 400 |
Tmin = 10- 9 s (= 1 ns) |
400 < λ ≤ 1 050 |
Tmin = 18 10- 6 s (= 18 µs) |
|
1 050 < λ ≤ 1 400 |
Tmin = 50 10-6 s (= 50 µs) |
|
1 400 < λ ≤ 1 500 |
Tmin = 10- 3 s (= 1 ms) |
|
1 500 < λ ≤ 1 800 |
Tmin = 10 s |
|
1 800 < λ ≤ 2 600 |
Tmin = 10-3 s (= 1 ms) |
|
2 600 < λ ≤106 |
Tmin = 10-7 s (= 100 ns) |
Physical exposure variables and calculation formulae
The biophysically relevant physical exposure quantities are calculated using the formulae below:
E = (dP/dA) [W m- 2]
H = t∫0 E(t) d t (J m- 2]
Detailed definition of the expressions used:
dP: power expressed in watts [W] ;
dA: surface area expressed in square metres [m2];
E(t), E: irradiance or power density: incident radiated power per unit area over a surface, generally expressed in watts per square metre [Wm2]. The values of E(t), E either come from measurements or can be provided by the equipment manufacturer;
H: energy exposure: the integral of irradiance with respect to time, expressed in joules per square metre (J m-2);
t: time, duration of exposure, expressed in seconds [s] ;
λ: wavelength, expressed in nanometres [nm] ;
γ: cone angle of limitation of the measurement field, expressed in milliradians [mrad] ;
γm: measuring field, expressed in milliradians [mrad] ;
α: apparent angle of a source, expressed in milliradians [mrad] ;
limiting iris: the circular area used to calculate the average irradiance and irradiance exposure;
G: integrated radiance: the integral of the radiance over a given exposure time, expressed as radiant energy per unit area of a radiant surface and per unit solid angle of emission, in joules per square metre per steradian [J m-2 sr -1].